ESTRALINHVC

CABLES DE POTENCIA XLPE Y SISTEMAS DE CABLE 6-220 KV

TECNOLOGÍA DE PUNTA
Y SOLUCIONES PARA CABLES XLPE

ESTRALINHVC

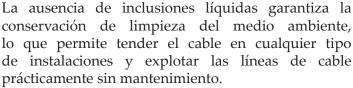
Cables de Potencia XLPE con aislamiento de polietileno reticulado2
Tecnología de producción3
Estralin HVC es el pionero en la producción de cables XLPE con aislamiento de polietileno reticulado en Rusia
Principales tipos de productos y servicios5
Codificación6
Cables XLPE con aislamiento de polietileno reticulado, tensiones desde 6-35 kV
Cables XLPE con aislamiento de polietileno reticulado, tensiones desde 110-220 kV
, <u>1</u>

Cables de Potencia XLPE con aislamiento de polietileno reticulado

Los cables para la tensión de 6-35 kV y de 110-220 kV se usan ampliamente para la transmisión y distribución de energía eléctrica, especialmente en grandes ciudades y en las empresas industriales donde el nivel de consumo de energía y la densidad de carga es demasiada alta.

El coste del cable forma una parte significante del coste total del sistema de transmisión de energía eléctrica, por eso los requerimientos básicos que se plantean a los cables (confiabilidad, funcionalidad y bajo costo del mantenimiento tienen un gran significado). Para evitar considerable perdidas financieras.

La vida util de los cables debe ser larga; su función es la de servir durante muchos años suministrando constantemente una potencia eléctrica suficiente al consumidor. A diferencia de los cables con aislamiento de papel impregnado o con relleno de aceite, cuya aplicación se limita cada año, los cables con aislamiento de polietileno reticulado (la marcación rusa – CΠϿ, inglesa – XLPE, alemana – VPE, sueca – PEX) corresponden completamente a este requerimiento.


Gracias al diseño, la tecnología moderna de producción y los materiales perfectos para los cables de media tensión y alta tensión con aislamiento de polietileno reticulado XLPE tienen mejores propiedades eléctricas y mecánicas y el plazo de servicio más duradero entre otros tipos de cables que se producen en serie.

Tomando en cuenta la capacidad de carga, los cables XLPE superan a los cables con aislamiento de papel relleno de aceite. Conforme los estándares internacionales el cable está destinado para funcionar en el régimen de máxima corriente admisible con temperatura del conductor hasta 90°C y podría estar activo en condiciones de emergencia con temperaturas más altas, mientras que los cables con aislamiento de papel rellenos de aceite admiten el calentamiento sólo hasta 70°C.

La ventaja de los cables XLPE con aislamiento de polietileno reticulado son aspectos ecológicos por su forma o proceso de fabricación protegiendo al medio ambiente.

Gracias a la construcción mono-polar del cable es mucho más fácil colocarlo y tenderlo, incluso en las condiciones difíciles y extremas. El tendido del cable XLPE con cubierta de polietileno reticulado se puede efectuar a temperaturas hasta –20°C con el calentamiento previo.

La tecnología del aislamiento de los cables XLPE con polietileno reticulado fue introducida en los años 70 del siglo XX. La reticulación es la creación de una red tridimensional usando formación de cadenas longitudinales y transversales entre las macromoléculas de polímeros. Con la combinación de las propiedades físicas y eléctricas, el polietileno reticulado XLPE cumple idealmente al aislamiento de los cables desde la media, alta y muy alta tensión.

Durante el proceso de producción del cable XLPE

de polietileno reticulado se pone atención especial a la pureza y calidad de los materiales de aislamiento, ya que cualquier inclusión extraña encontrada en el aislamiento lleva a la reducción del plazo de servicio del cable o su vida util. Exactamente por esta causa el concepto de las salas limpias (clean rooms) que excluyen el contacto con los materiales extraños, y ademas la cooperación con los proveedores de las materias primas asegurando el control de la calidad, son los elementos de producción de un cable que aseguran un largo plazo de explotación de los cables sin fallas.

Es necesario poner énfasis, el aislamiento y las pantallas electro-conductoras se entrelazan durante el proceso de la triple extrusión, después tiene lugar la reticulación de estas tres capas simultáneamente. Tal tecnología garantiza una buena adhesión entre las pantallas y el aislamiento. Las ventajas de la construcción, diseño y la tecnología de punta de producción de los cables XLPE con aislamiento de polietileno reticulado han condicionado su aplicación general en los países desarrollados y la reducción considerable de uso de otros tipos de cables.

ESTRALINHVO

Estralin HVC pionero en la producción de los cables XLPE con aislamiento de polietileno reticulado en Rusia

El objetivo de la Fabrica "Estralin Planta de Cables de Potencia" ("Estralin HVC") es la introducción de las tecnologías de punta en el área de producción de los cables de potencia. Garantizando alta calidad de producción y otorgando servicios. Hemos ayudado a nuestros clientes a ser más competitivos y reducir la influencia negativa en el medio ambiente.

"Estralin HVC" presta mucha atención al desarrollo y perfeccionamiento de las tecnologías que garantizan la alta calidad de los productos fabricados. Para el aislamiento de los cables se usan sólo los mejores materiales de los proveedores mundiales con tecnología de punta. Estos son los polietilenos reticulados con super-óxidos — endurecidos con la temperatura (PREP) y los polietilenos reticulados copolimerizados (PRC). La alta calificación de los empleados y el uso de los materiales con alta calidad permiten fabricar la producción que corresponde a los estándares rusos e internacionales, y que es competitiva en comparación con los análogos de Europa Occidental.

El control constante en todas las etapas de trabajo, desde la selección de cable y de accesorios en la etapa de proyecto hasta la puesta de la línea de cable en servicio, permite para la compañía satisfacer de una manera más completa las exigencias y requerimientos del cliente para sus líneas de cable de potencia. El uso de un enfoque sistemático garantiza los estándares internacionales mas altos de calidad.

El uso de un enfoque sistemático garantiza los estándares internacionales mas altos de calidad. Una gran atención es prestada a los aspectos ecológicos de la producción. Los éxitos de "Estralin HVC" para la creación e introducción de los sistemas de calidad han sido marcados por la compañía de certificación europea independiente TUV CERT que emitió para la empresa los certificados de conformidad de los requerimientos a los estándares ISO 9001: 2008, ISO 14001:2004.

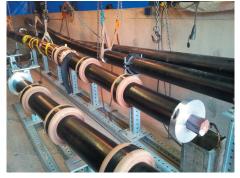
ESTRALINHVO

La actividad principal de "Estralin HVC" es la producción de cable para la tensión de 6-220 kV para las aplicaciones de redes con el neutro aislado y puesto a tierra.

Todos los cables según su construcción, las características técnicas y las propiedades de explotación corresponden a los requerimientos de los estándares rusos e internacionales: IEC 60502-2 (cables para 6-35 kV), IEC 60840-2011 (cables para 110 kV), IEC 62067-2011 cables para 220 kV), la certificación según GOST R en el area de seguridad contra incendios, fuego.

Además de los cables para la tensión de 6-220 kV nuestra compañía ofrece:

- los accesorios de cable para media y alta tensión;
- la asistencia técnica en todas las etapas de colaboración del proyecto.



Material del conductor	Sin marcación	Conductor de cobre
	A	Conductor de aluminio
	RMS	Conductor segmentado bloqueado
Material del aislamiento	Υ	PVC
	2XS	XLPE Aislamiento de polietileno reticulado (vulcanizado)
Cubierta	2Y	Cubierta de polietileno
	Н	La cubierta de una composición polimérica que no propaga fuego, no contiene los halógenos, A – no propagación de fuego según cat. A; B – no propagación de fuego según cat. B;
	Y	La cubierta de caucho plasticado de PVC de inflamabilidad reducida con tal índice de no propagación del fuego A – no propagación de fuego según cat. A; B – no propagación de fuego según cat. B;
	Y-LS	La cubierta de caucho plasticado de PVC de inflamabilidad reducida con emisiones de humo y gas reducidas
Pantalla	F	La barrera longitudinal de la pantalla por las capas higroscópicas
	FL	Cable con la barrera longitudinal por las capas higroscópicas y con bloqueo transversal por cinta de aluminio y polímero soldada con cubierta
	LWL (después de designar la cubierta)	Fibras ópticas en los tubos de acero incorporados a la pantalla de cobre

A2XS(FL)Y-A-LWL 1x1600RMS/185 64/110 kV Conductor de aluminio Aislamiento de polietileno reticulado La cubierta de caucho plasticado de PVC de categoría A, que no propaga fuego, con doble bloqueo Fibras ópticas incorporadas Número de conductores Conductor segmentado con bloqueo Sección de la pantalla decisiones que sean implementadas. Tensión nominal

Cables XLPE con aislamiento de polietileno reticulado para la tensión de 6-35 kV

Características comparativas	Cable con aislamiento reticulado para la tensión de	Cable con aislamiento de papel			
	6-35 kV XLPE Cables	10 kV	20-35 kV		
Temperatura admisible durante largo tiempo, °C	90	70	65		
Temperatura admisible en condiciones de emergencia, °C	130	90	65		
Temperatura admisible en caso de cortocircuito, °C	250	200	130		
Temperatura durante el tendido sin calentamiento previo, no inferior de, °C	-20	0	0		
Permeabilidad dieléctrica relativa ε a 20°C	2,4	4,0	4,0		
Factor de pérdidas dieléctricas tgδ a 20°C	0,001	0,008	0,008		
Diferencia entre los niveles en el trayecto de tendido, m	no está limitado	15	15		

Las ventajas principales del cable XLPE con aislamiento de polietileno reticulado son:

- gran capacidad de carga por el aumento de la temperatura admisible del conductor (las corrientes admisibles de carga según las condiciones de tendido son a 15-30% mayores que las del cable con aislamiento de papel);
- alta corriente de estabilidad térmica en caso de cortocircuito, lo que es muy importante cuando la sección del cable está seleccionada sólo con base en la corriente nominal del cortocircuito;
- bajo peso, diámetro y el radio de curvatura menores, todo esto garantiza la facilidad de tendido del cable tanto en conductos de cable como en subterráneo en los trayectos complicados;
- la posibilidad de realizar el tendido de cable a la temperatura de -20°C sin calentamiento previo gracias al uso de los materiales de polímero para el aislamiento y la cubierta;
- baja defectuosidad específica (la practica de aplicación del cable XLPE con aislamiento de polietileno reticulado demuestra que numero de defectos está 1-2 ordenes menos que esto del cable con aislamiento de papel impregnado);

- la ausencia de algunos componentes líquidos (los aceites) gracias a esto se reducen el tiempo y el precio de tendido y montaje;
- construcción mono-polar permite producir cables con conductors de secciones hasta 1000 mm² óptimos para la transmisión de gran potencia;
- longitudes de cables hasta 2000-4000 m

También se toma en consideración que las fallas en el cable de un solo conductor es el cortocircuito monofásico, se puede confirmar que los gastos para la reparación se reducen significativamente.

El aislamiento rígido da grandes ventajas durante el tendido en el terreno con grandes inclinaciones, las colinas y en el terreno accidentado, de hecho en los trayectos con gran diferencia de niveles, en los conductos verticales e inclinados.

Construcción

Los cable XLPE con aislamiento de polietileno reticulado para las tensiones de 6, 10, 20 y 35 kV consiste en un conductor redondo de muchos hilos de cobre o aluminio, la capa semiconductora sobre el conductor, el aislamiento de polietileno reticulado, la cama de cinta electro-conductora, la pantalla de hilos y cinta de cobre, la capa divisoria de cinta electro-conductora, la cubierta de polietileno de dureza elevada o la cubierta de caucho plasticado de PVC de inflamabilidad reducida o de caucho plasticado de PVC de inflamabilidad reducida con emisiones de humo y gas reducidas o de una composición polimérica que no contiene halógenos.

Con el fin de asegurar el sellado longitudinal de la pantalla, una cinta conductora de bloqueo del agua se puede utilizar en lugar de una cinta conductora, y una capa de cinta conductora de bloqueo del agua puede sustituir a una capa de separación.

Los cables con el índice "FL" además del sellado longitudinal de la pantalla tienen el sellado transversal con una cinta de aluminio y polímero soldado en la cubierta de polietileno o de PVC. Tal construcción crea una barrera de difusión efectiva que impide la penetración de los vapores de agua, y la cubierta exterior de polietileno negro sirve como protección mecánica.

Aplicación

Los cables 2XS2Y, A2XS2Y se usan para tendidos subterráneos, así como en el aire a condición de garantizar las medidas de protección contra incendios. Los cables con sellado – para el tendido en los suelos con la humedad elevada y en los locales húmedos particularmente inundados.

Los cables 2XSY, A2XSY, 2XS(FL)Y,A2XS(FL)Y se aplican para el tendido en conductos de cables y en los locales industriales (el 2XS(F1)Y y el A2XS(F1)Y se usan durante el tendido en grupo), así como para el tendido subterráneo en suelos secos.

Los cables 2XS(FL)Y-LS,A2XS(FL)Y-LS están destinados para el tendido fijo en grupo en lineas areas, en conductos de cables y en los locales donde están exigidos ciertos requerimientos de densidad de humo durante un incendio o fuego. Los cables 2XS(F1)Y-HF y A2XS(F1)Y-HF se aplican durante el tendido fijo en las instalaciones eléctricas de las instalaciones públicas e industriales donde se aplican ciertos requerimientos de limitación de los gases de corrosión activa.

Características técnicas del cable XLPE de polietileno reticulado de 6-10 kV1

Sección nomi	nal	mm²	50	70	95	120	150	185	240	300	400	500	630	800	1000	1200
Sección de la	pantalla²	mm²	16	16	16	16	25	25	25	25	35	35	35	35	35	50
Espesor del aislamiento		mm	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4
Espesor de la	cubierta	mm	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,7	2,7	2,9	2,9
Diametro exte	erior³	mm	27,4	29,1	30,8	32,3	33,5	35,4	37,6	39,9	42,9	45,9	49,8	54	58,2	63,4
	ado³ nductor nductor	kg/ km	689 999	784 1217	891 1479	994 1737				1746 3602		I		1	4210 10397	5152 12781
Radio mínimo curvatura	de de	cm	42	44	47	49	51	53	57	60	65	69	75	81	87	95
Esfuerzos adicio tendido Al con	onales de nductor nductor	κN	1,5 2,5	2,1 3,5	2,85 4,75	3,60 6,00	4,50 7,50	5,55 9,25	7,20 12,0	9,00 15,0	12,0		18,9 31,5	24,0 40,0	30,0 50,0	36,0 60,0
Longitud max carrete ⁴	ima por	m	11760	10380	9150	8550	7810	7090	6410	5810	5270	4760	i4290	3790	3410	3050
Intensidad ma admissible en		A	223 173	273 212	326 253	370 288	414 322	467 365	540 423	607 477	683 543	768 618	858 702	947 788	1026 871	1060 920
Intensidad ma admissible en		A	231 180	282 220	336 262	379 296	421 331	472 373	542 431	606 484	662 540	736 609	814 683	889 759	957 833	945 846
Intensidad ma admissible en		A	259 201	322 250	391 304	450 350	509 396	581 454	683 535	782 614	899 715	1030 829		1327 1102	1452 1230	1541 1334
Intensidad ma admissible en		A	301 234	374 292	454 355	522 409	582 458	662 525	771 615	875 702	969 796		1222 1036			1501 1351

¹ Todos los datos de la tabla 1 se muestran para las redes de la categoría A y B (según IEC 60183).

² Está demostrada la sección mínima de la pantalla. La sección de la pantalla se selecciona según condiciones de la corriente del cortocircuito.

El peso, el diámetro exterior y la intensidad máxima admisible de las corrientes de tipos de cable 2XS2Y y A2XS2Y con la sección mínima de la pantalla. Durante selección de la sección mayor de la pantalla la intensidad máxima admisible del corrientes se reduce por causa de las pérdidas de la pantalla.

⁴ La desviación de la longitud de cable nominal es de ± 1%.

Características técnicas del cable de polietileno reticulado para la tensión de 20 kV

Sección nominal	mm²	50	70	95	120	150	185	240	300	400	500	630	800	1000	1200
Sección de la pantal	l a ¹ mm²	16	16	16	16	25	25	25	25	35	35	35	35	35	50
Espesor del aislamiento	mm	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5
Espesor de la cubier	ta mm	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,7	2,7	2,9	2,9	2,9
Diametro exterior ²	mm	31,6	33,3	34,9	36,4	37,7	39,6	41,8	44,1	47,5	50,5	54,0	58,6	62,4	67,6
Peso aprox. ² Al conducto Cu conducto	1.95	849 1158	953 1386			1386 2314		1751 3236	1981 3838				3899 8848	4557 10744	5568 13197
Radio mínimo de curvatura	cm	48	50	52	55	57	60	63	66	72	76	81	88	94	101
Esfuerzos adicionales o tendido Al conducto Cu conducto	r kN	1,5 2,5	2,1 3,5	2,85 4,75	3,60 6,00	4,50 7,50		7,20 12,0	9,00 15,0	12,0 20,0	15,0 25,0	18,9 31,5	24,0 40,0	,	36,0 60,0
Longitud maxima po carrete ³	or ¦ m	8380	7500	6670	6250	5770	5260	4790	4370	3990	3620	3260	2910	2640	2370
Intensidad max admissible en el sue Cu Al	lo ² A	224 174	274 213	327 254	371 289	416 323	469 366	542 424	610 479	687 545	774 621	869 706	961 794	1040 879	1073 928
Intensidad max admissible en el sue Cu Al	lo ² A	231	282 220	337 262	382 298	423 332	474 374	545 432	609 485	667 543	742 612	823 688	900 765	966 839	953 852
Intensidad max admissible en el airo Cu Al	A	261 203	325 252	394 306	453 352	512 398	585 457	687 537	786 616	903 717		1182 960		1468 1236	1555 1340
Intensidad max admissible en el airo Cu Al	2 A	298 232	371 289	450 351	517 404	577 454	657 519	764 608	868 694	965 788	1	1221 1028	1359 1165	1500 1304	1509 1352

¹ Está demostrada la sección mínima de la pantalla. La sección de la pantalla se selecciona según condiciones de la corriente del cortocircuito.

² El peso, el diámetro exterior y la intensidad máxima admisible de las corrientes de tipos de cable 2XS2Y y A2XS2Y con la sección mínima de la pantalla. Durante selección de la sección mayor de la pantalla la intensidad máxima admisible del corrientes se reduce por causa de las pérdidas de la pantalla.

³ La desviación de la longitud de cable nominal es de ± 1%.

Características técnicas del cable de polietileno reticulado para la tensión de 35 kV

Sección nominal	mm²	50	70	95	120	150	185	240	300	400	500	630	800	1000	1200
Sección de la pantal	l a¹ mm²	16	16	16	16	25	25	25	25	35	35	35	35	35	50
Espesor del aislamiento	mm	9,0	9,0	9,0	9,0	9,0	9,0	9,0	9,0	9,0	9,0	9,0	9,0	9,0	9,0
Espesor de la cubier	ta mm	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,7	2,7	2,9	2,9	2,9	2,9	2,9
Diametro exterior ²	mm	38,2	39,9	41,6	43,1	44,7	46,7	49,3	51,6	55,0	58,0	61,4	65,6	69,4	74,6
Peso aprox. ² Al conducto Cu conducto	1.95	1171 1480												5162 11379	
Radio mínimo de curvatura	cm	57	59	63	65	67	70	74	78	83	87	92	99	104	112
Esfuerzos adicionales o tendido Al conducto Cu conducto	rкN	1,5 2,5	2,1 3,5	2,85 4,75	3,60 6,0	4,50 7,50		7,20 12,0	9,0 15,0		15,0 25,0	18,9 31,5	24,0 40,0		36,0 60,0
Longitud maxima po carrete ³	or m	7690	6990	6290	5950	520	5100	4670	4350	3950	3610	3280	2510	2700	2430
Intensidad max admissible en el sue Cu Al	lo ² A	224 174	274 213	327 254	371 289	1416 1323	469 366	542 424	610 479	687 545	774 621	869 706	961 794	1040 879	1091 939
Intensidad max admissible en el sue Cu Al	lo ² A	231	282 220	337 262	382 298	1423 1332	474 374	545 432	609 485	667 543	742 612	823 688	900 765	966 839	965 861
Intensidad max admissible en el airo Cu Al	A	261 203	325 252	394 306	453 352	512 398	585 457	687 537	786 616	903 717	1036 830	1182 960		1468 1236	1572 1346
Intensidad max admissible en el airo Cu Al	2 A	298	371 289	450 351	517 404	577 454	657 519	764 608	868 694	700		1221 1028			1520 1352

Está demostrada la sección mínima de la pantalla. La sección de la pantalla se selecciona según condiciones de la corriente del cortocircuito.

² El peso, el diámetro exterior y la intensidad máxima admisible de las corrientes de tipos de cable 2XS2Y y A2XS2Y con la sección mínima de la pantalla. Durante selección de la sección mayor de la pantalla la intensidad máxima admisible del corrientes se reduce por causa de las pérdidas de la pantalla.

³ La desviación de la longitud de cable nominal es de ± 1%.

La capacidad de carga de los cables de media tensión se calcula bajo las siguientes condiciones.

Para el tendido subterráneo:

factor de carga	1,0
profundidad de tendido	0,7 m
resistencia térmica del suelo	1,2 K•m/W
temperatura del medio ambiente, t°	15°C
temperatura del conductor, t°	90°C

Para el tendido en el aire:

factor de carga	1,0
temperatura del medio ambiente, t°	25°C
temperatura del conductor, t°	90°C

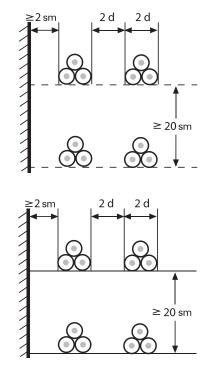
En las condiciones de explotación la intensidad máxima admisible de las corrientes para cada línea de cables se establecen tomando en consideración las condiciones concretas. En caso de otras temperaturas de cálculo del medio ambiente es necesario aplicar los coeficientes de corrección indicados en el tabla.

Mientras que los cables monofásicos son instalados en trifolio la distancia entre ellos debe ser muy estrecha, para la instalación en paralelo la distancia hueca entre cables debe ser igual al diámetro del cable.

Coeficientes de corrección para la temperatura del medio ambiente												
Temperatura	-5	0	5	10	15	20	25	30	35	40	45	50
En el suelo	1,13	1,10	1,06	1,03	1,00	0,97	0,93	0,89	0,86	0,82	0,77	0,73
En el aire	1,21	1,18	1,14	1,11	1,07	1,04	1,00	0,96	0,92	0,88	0,83	0,78

Coeficientes de corrección para la resistencia específica del suelo									
Resistencia térmica específica del suelo, K·m/W	0,8	1,0	1,2	1,5	2,0	2,5			
Coeficiente de corrección	1,13	1,05	1,00	0,93	0,85	0,8			

	Coeficier	ite de correc	cción			
Profundidad de tendido, m	0,50	0,70	0,90	1,00	1,20	1,50
Coeficiente de corrección	1,05	1,00	0,96	0,95	0,93	0,9


Los coeficientes de corrección para la cantidad de los cables en funcionamiento que se encuentran juntos un a otro en el mismo plano en el suelo, en los tubos y sin tubos, se aplican en tal caso cuando la sección de la línea de cables entre conexiones a tierra se encuentra tendidos en parte en los tubos en las siguientes condiciones:

- los cables se ponen en una formación triangular sobre
una parte sustancial de la sección de línea

- los tubos se tienden en una formación plana;
- la longitud que está instalada en los tubos representa menos del 10% de la sección entre las conexiones a tierra;
- cada cable en un tubo separado;
- el diámetro del tubo es dos veces mayor que el diámetro del cable.

Coeficientes de corrección para los cables tendidos juntos de 6, 10, 15, 20 y 35 kV								
Cables tendidos parcialmente en los tubos separados	0,94							
Cables en los tubos separados en el mismo plano	0,90							
Cables de un conductor tendidos en trifolio en el tubo comun	0,90							

	Coeficientes de corrección para la cantidad de los cables que funcionan un al lado de otro										
Distancia hueca entre	Número de las líneas de cable										
los cables, mm	2	3	4	5	6						
100	0,76	0,67	0,59	0,55	0,51						
200	0,81	0,71	0,65	0,61	0,49						
400	0,85	0,77	0,72	0,69	0,66						

Coeficientes de corrección durante el tendido de los cables en trifolio en el aire										
Número d	Número de cables / sistemas en una bandeja									
Número de bandejas	1	2	3							
1	1,00	0,98	0,96							
2	1,00	0,95	0,93							
3	1,00	0,94	0,92							
4-6	1,00	0,93	0,90							
1	0,95	0,90	0,88							
2	0,90	0,85	0,83							
3	0,88	0,83	0,81							
4-6	0,86	0,81	0,79							

Corrientes de corto circuito

Para todos los tipos de cables y secciones la corriente de corto circuito se calcula a partir de las siguientes condiciones:

Temperatura en el conducto	r	Temperatura en la pantalla				
antes del cortocircuito	90°C	antes del cortocircuito	70°C			
después del cortocircuito	250°C	después del cortocircuito	350°C			

	Corriente admisible de un segundo													
Sección del conductor mm²	50	70	95	120	150	185	240	300	400	500	630	800	1000	1200
Conductor de cobre	7,15	1,00	13,6	17,2	21,5	26,5	34,3	42,9	57,2	71,5	90,1	114,4	143,0	172,8
Conductor de aluminio	4,7	6,6	8,9	11,3	14,2	17,5	22,7	28,2	37,6	47,0	59,2	75,2	93,9	114,3

Corriente de cortocircuito admisible de un segundo por la pantalla									
Sección de la pantalla ¹ , mm ²	16	25	35	50	70				
1 sec corriente de cortocircuito de la pantalla, kA	3,3	5,1	7,1	10,2	14,2				

Para una duración de cortocircuito que se distingue de 1 segundo, los valores de la corriente de cortocircuito indicados en las tablas se deben multiplicar por el coeficiente de corrección:

 $K = 1/\sqrt{t}$, donde t - duración de cortocircuito, segundos.

Los valores de las corrientes de cortocircuito admisibles de un segundo para otras secciones de la pantalla se calculan según la orden o pedido.

Características eléctricas

Resistencia del conductor a la corriente continua a 20°C, Ohm/km, no menos de									
Sección nominal del conductor, mm²	Conductor de cobre	Conductor de aluminio							
50	0,3870	0,6410							
70	0,2680	0,4430							
95	0,1930	0,3200							
120	0,1530	0,2530							
150	0,1240	0,2060							
185	0,0991	0,1640							
240	0,0754	0,1250							
300	0,0601	0,1000							
400	0,0470	0,0778							
500	0,0366	0,0605							
630	0,0280	0,0464							
800	0,0221	0,0367							
1000	0,0176	0,0291							
1200	0,0151	0,0247							

La resistencia del conductor a la temperatura que se distingue de 20°C se calcula según las fórmulas:

Para conductor de cobre: $R_{\tau}=R_{20}\cdot(234,5+\tau)/254,5$

Para conductor de aluminio: $R_{\tau}=R_{20}\cdot(228+\tau)/254,5$

donde τ – temperatura del conductor a 20°C, (Ohm/km),

R20 – resistencia del conductor a 20°C, (Ohm/km),

 $R\tau$ – resistencia del conductor a d°C, (Ohm/km),

	Capacidad de cable para diferentes niveles de tensión, μF/km													
Tensión, kV	i !	Sección del conductor, mm²												
Tension, it	50	70	95	120	150	185	240	300	400	500	630	800	1000	1200
6	0,300	0,340	0,390	0,420	0,450	0,500	0,560	0,610	0,620	0,670	0,750	0,840	0,930	1,040
6/10	0,255	0,2891	0,328	0,351	0,384	0,423	0,468	0,516	0,569	0,630	0,700	0,792	0,880	0,983
10/10	0,226	0,254	0,288	0,307	0,336	0,370	0,410	0,450	0,493	0,550	0,610	0,680	0,757	0,845
15	0,207	0,230	0,262	0,280	0,305	0,325	0,369	0,405	0,445	0,492	0,548	0,615	0,680	0,759
20	0,179	0,200	0,225	0,240	0,260	0,285	0,313	0,343	0,376	0,414	0,460	0,515	0,568	0,633
35	0,130	0,143	0,159	0,168	0,181	0,196	0,214	0,230	0,253	0,277	0,305	0,399	0,371	0,411

	Valor de la corriente de fuga para diferentes niveles de tensión, A/km													
Tensión, kV	Sección del conductor, mm²													
Telision, KV	50	70	95	120	150	185	240	300	400	500	630	800	1000	1200
6	0,305	0,348	0,381	0,414	0,446	0,490	0,555	0,599	0,609	0,675	0,773	0,871	0,969	1,068
10	0,435	0,490	0,544	0,580	0,635	0,689	0,780	0,852	0,961	1,070	1,215	1,378	1,524	1,780
15	0,560	0,630	0,710	0,780	0,830	0,910	1,010	1,100	1,230	1,360	1,490	1,670	1,850	2,060
20	0,617	0,689	0,762	0,834	0,943	0,979	1,052	1,161	1,270	1,415	1,560	1,778	1,959	2,290
35	0,889	1,016	1,143	1,206	1,270	1,397	1,524	1,651	1,841	2,031	2,222	2,539	2,857	2,610

Resistencia inductiva del conductor a la frecuencia de 50 Hz¹, Ohm/km										
Sección	6/10	2 kV	20 ²	kV	35² KV					
nominal del conductor, mm²	000	8	000	8	000	8				
50	0,204	0,127	0,219	0,143	0,231	0,156				
70	0,196	0,119	0,210	0,134	0,222	0,146				
95	0,189	0,112	0,203	0,127	0,214	0,139				
120	0,184	0,108	0,198	0,122	0,209	0,133				
150	0,179	0,103	0,192	0,116	0,203	0,127				
185	0,175	0,099	0,188	0,112	0,198	0,122				
240	0,170	0,094	0,183	0,107	0,193	0,117				
300	0,167	0,091	0,179	0,103	0,189	0,113				
400	0,165	0,088	0,173	0,097	0,182	0,106				
500	0,161	0,085	0,169	0,093	0,178	0,102				
630	0,159	0,083	0,166	0,090	0,174	0,098				
800	0,157	0,081	0,163	0,087	0,170	0,094				
1000	0,154	0,079	0,159	0,083	0,166	0,090				
1200	0,152	0,076	0,156	0,080	0,162	0,087				

El cálculo de las resistencias inductivas está realizado en caso de posición de los cables en triángulo estrechamente pegados, y en un mismo plano con la distancia hueca entre los cables, que equivale al diámetro del cable.

² Los valores de resistencia inductiva para otras clases de tensión y en otra posición de cables se calculan por pedido o orden.

¹ Los valores de inductancia son calculados tomando en consideración la conexión a tierra de ambos lados de la pantalla.

Condiciones de tendido y pruebas después de tender los cables de media tensión

Durante el tendido de cable con aislamiento de polietileno reticulado el radio de la curvatura no debe ser menor que 15xD donde D – el diámetro exterior del cable. Durante el montaje con el uso de un patrón especial se permite el radio mínimo de la curvatura de 7.5xD.

Durante el tendido de cable con el uso de una manga o por el conductor los esfuerzos de tracción (tension de tiro) no deben superar los siguientes valores:

 $F = S \times 50 \text{ N/mm}^2$ – para el conductor de cobre, $F = S \times 30 \text{ N/mm}^2$ – para el conductor de aluminio, donde S – área de conductor de la sección transversal en mm².

La temperatura de cable durante el tendido no debe ser inferior de:

-15°C – para los cables con cubierta de caucho plasticado de PVC;

−20°C − para los cables con cubierta de polietileno.

Esto se alcanza almacenando el cable en un local templado (20°C) durante 48 horas o con ayuda de un equipo especial.

Después del tendido y montaje se recomienda efectuar las pruebas con la tensión alterna con frecuencia de 0,1-1,0 Hz durante 15 minutos.

para el cable de 6 kV - 18 kV, para el cable de 10 kV - 30 kV, para el cable de 15 kV - 45 kV, para el cable de 20 kV - 60 kV, para el cable de 35 kV - 105 kV.

Se permiten las pruebas con la tensión alterna con frecuencia industrial durante 24 horas para el cable de:

para el cable de 6 kV - 3,6 kV, para el cable de 10 kV - 6 kV, para el cable de 15 kV - 8,7 kV, para el cable de 20 kV - 12 kV, para el cable de 35 kV - 20 kV.

En coordinación con el fabricante se permiten las pruebas de cable después de tendido con la tensión de la corriente continua 4U₀ durante 15 minutos.

La cubierta del cable debe estar probada con la tensión continua de 10 kV aplicada entre la pantalla metálica y la toma de tierra durante por lo menos 1 minuto.

Capacidad de los carretes para los cables

Longitud del cable de polietileno reticulado, m										
Diámetro	Lon	igitud del cable	e, m							
exterior del cable, mm	22D	24D	25D							
26	2405	4566	6593							
27	2230	4234	6113							
28	2073	3937	5685							
29	1933	3670	5299							
30	1806	3430	4952							
31	1692	3212	4638							
32	1587	3014	4352							
33	1493	2835	4092							
34	1406	2670	3855							
35	1327	2520	3638							
36	1254	2382	3439							
37	1187	2255	3255							
38	1126	2138	3086							
39	1069	2029	2930							
40	1016	1929	2785							
41	967	1836	2651							
42	922	1750	2526							
43	879	1669	2410							
44	840	1594	2302							
45	803	1524	2201							
46	768	1459	2106							
47	736	1397	2018							
48	706	1340	1934							

Longitud del cable de polietileno reticulado, m										
Diámetro	Longitud del cable, m									
exterior del cable, mm	22D	25D								
49	677	1286	1856							
50	650	1235	1783							
51	625	1187	1713							
52	601	1142	1648							
53	579	1099	1587							
54	557	1059	1528							
55	537	1020	1473							
56	518	984	1421							
57	500	950	1372							
58	483	918	1325							
59	467	887	1280							
60	452	857	1238							
61	437	830	1198							
62	423	803	1159							
63	410	778	1123							
64	397	754	1088							
65	385	731	1055							
66	373	709	1023							
67	362	688	993							
68	352	668	964							
69	341	648	936							
70	332	630	910							

En la tabla se muestran las longitudes del cable de polietileno reticulado de 6, 10, 20 y 35 kV, que caben en los t carretes de madera estandartizados.

Las longitudes pueden ser aumentadas en coordinación con el cliente con el uso de los carretes de gran capacidad. Con surge la necesidad de uso de los transportadores especiales de cables, también hay que recordar tomar en cuenta las reglas de transportación para evitar problemas de logística de transporte (cargo).

Características comparativas	Cables con aislamiento de polietileno reticulado	Cable con relleno de aceite de alta presión				
Temperatura máxima admisible, °C	90	85				
Calentamiento admisible en régimen de emergencia, °C	105	90				
Temperatura máxima admisible en caso de de cortocircuito, °C	250	200				
Densidad de la corriente de cortocircuito durante 1 segundo, A/mm² —Cu conductor — Al conductor	144 93	101 67				
Permeabilidad dieléc- trica relativa δ a 20°C	2,5	3,3				
Factor de pérdidas dieléctricas tgδ a 20°C	0,001	0,004				

Las ventajas principales del cable con aislamiento de polietileno reticulado son:

- la gran capacidad de carga por cuenta de aumento de la temperatura admisible del conductor;
- la alta resistencia térmica en caso de cortocircuito, lo que es muy importante cuando la sección del cable está seleccionada sólo con base en la corriente nominal del cortocircuito;
- el bajo peso, el diámetro y el radio de la curvatura menores, y como consecuencia
- la facilidad de tendido del cable tanto en los conductos de cable como en el suelo y en los trayectos complicados;
- el aislamiento duro que da grandes ventajas durante el tendido por el terreno con grandes inclinaciones, las colinas y en el terreno accidentado, de hecho en los travectos con gran diferencia entre los niveles

por cuenta de ausencia del efecto de flujo de masa;

- la ausencia del líquido (de aceite) bajo presión, y de esta manera del equipo caro de alimentación, lo que lleva a la reducción significante de los gastos de explotación, la simplificación del equipo de montaje, la reducción del tiempo y del coste de trabajos del tendido y del montaje;
- la posibilidad de reparación rápida en caso de una perforación;
- la ausencia de fugas de aceite y de peligro de polución del medio ambiente en caso de dañar las cubiertas.

Construcción

El cable XLPE con aislamiento de polietileno reticulado para la tensión de 110-220 kV consiste en el conductor comprimido o segmentado redondo de cobre o aluminio, la capa semiconductora sobre el conductor, el aislamiento de polietileno reticulado, la capa semiconductora sobre el aislamiento, la cinta semiconductora, la pantalla de los hilos de cobre y de cinta de cobre, la cinta semiconductora, la cubierta de polietileno o de caucho plasticado de PVC.

Al conductor se le aplica la pantalla extrusionada de material semiconductor, el aislamiento y la pantalla semiconductor por el aislamiento ligados entre sí. El espesor de aislamiento depende del diámetro del conductor.

La pantalla metálica consiste en los alambres de cobre y de la cinta de cobre aplicada encima en espiral. La sección de la pantalla se selecciona según condición de flujo de las corrientes de cortocircuito.

Para garantizar el sellado longitudinal en los cables con el índice "F" se usa una capa de material que higroscópico. En caso de contacto con agua esta capa se incha y forma una barrera longitudinal evitando así la propagación de agua en caso de dañar la cubierta exterior.

Los cables con el índice "FL" además del sellado longitudinal tienen la cubierta de cinta de aluminio y polímero soldada con cubierta de polietileno o de PVC. Tal construcción crea una barrera de difusión efectiva que impide la penetración de los vapores de agua, y la cubierta exterior de polietileno negro sirve como la protección mecánica.

Según pedido del cliente se fabricara el cable de 110-220 kV con fibra óptica incorporada para la medición de temperatura por toda la longitud del cable y la transmisión de cualquier tipo de señales.

Cables XLPE con aislamiento de polietileno reticulado para la tensión de 110-220 kV

Características técnicas del cable para la tensión de 110 kV

Sección nominal	mm ²	185	240	300	350	400	500	630	800	1000	1200	1400	1600	2000
Sección de la pantalla¹	mm²	35	35	35	35	35	35	35	35	35	50	50	50	50
Espesor del aislamiento	mm	16,0	16,0	16,0	16,0	15,0	15,0	15,0	15,0	15,0	15,0	15,0	15,0	15,0
Espesor de la envoltura	mm	3,0	3,0	3,2	3,4	3,4	3,4	3,6	3,6	3,8	4,0	4,0	4,0	4,0
Diámetro exterior	mm	64	66	69	70	70	73	77	81	85	91	95,8	98,1	104,6
Peso aproximado² Al conductor Cu conductor	kg/ km	3400 4560	3700 5180	4000 5870	4230 6390	4290 6760	4830 7930	5410 9310	6140 11090	7316 13699	8422 16081	8900 17600	9600 19600	11100 23600
Radio mínimo de la curvatura	cm	95	99	104	105	105	109	116	122	128	137	144	148	157
Esfuerzos adicionales de tracción Al conductor Cu conductor	kN	5,55 9,25	7,20 12,00	9,00 15,00	10,5 17,5	12,0 20,00	15,0 25,0	18,9 31,5	24,0 40,0	30,0 50,0	36,0 60,0	42,0 70,0	48,0 80,0	60,0 100,0
DC resistencia Cu conductor Al conductor													0,0113 0,0186	
Inductancia ³	mH/ km	0,4627	0,4439	0,4289	0,4209	0,4057	0,39	0,3781	0,363	0,351	0,339	0,334	0,330	0,317
Capacitad	μF/ km	0,1364	0,1468	0,1575	0,1639	0,179	0,1936	0,209	0,2296	0,25	0,27	0,29	0,30	0,33
Intensidad max admissible en el suelo ⁴ Cu Al	A	500 395	575 455	650 515	715 560	755 600	840 675	935 760	1030 850	1121 935	1184 1009	1248 1059	1298 1114	1364 1204
Intensidad max admissible en el suelo Cu Al	A	451 366	507 416	556 461	581 486	611 514	667 572	724 631	777 690	869 782	927 838	960 877	982 906	1014 951
Intensidad max admissible en el aire ⁵ Cu Al	A	600 480	690 555	755 630	835 680	895 735	995 825	1115 948	1245 1060	1452 1253	1494 1317	1598 1408	1666 1483	1796 1629
Intensidad max admissible en el aire ⁶	A	624	725	820	871	938	1065	1204	1352	1485	1533	1629	1692	1814
OOO Cu Al	į	494	576	656	702	758	872	999	1332	1485 1275	1344	1629	1516	1655

¹ La sección de la pantalla se selecciona a partir de las condiciones de fluido de las corrientes de cortocircuito y puede ser aumentada.

² El peso se da para los cables de marcas con la cubierta de polietileno y la sección principal de la pantalla.

³ El cálculo se realiza en caso de tender los cables en trifolio muy estrecho y con la conexión de la pantalla a tierra de dos lados.

⁴ Las corrientes están calculadas para la profundidad de tendido de 1.5 m de la resistencia térmica específica del suelo de 1.20 K-m/W y el coeficiente de carga Kc = 0.8.

⁵ Las corrientes están calculadas en caso de tendido en el aire y la posición trifolio, la distancia hueca entre las fases del cable – el diámetro, no hay influencia de la radiación solar, la conexión a tierra está realizada de dos lados.

Las corrientes están calculadas en caso de tendido en el aire y la posición en paralelo, la distancia hueca entre las fases del cable – el diámetro, no hay influencia de la radiación solar, la conexión a tierra está realizada de dos lados.

Características técnicas del cable para la tensión de 220 kV

Sección nominal	mm²	400	500	630	800	1000	1200	1400	1600	2000	2500
Sección de la pantalla¹	mm²	265	265	265	265	265	265	265	265	265	265
Espesor del aislamiento	mm	24,0	24,0	24,0	24,0	22,0	22,0	22,0	22,0	22,0	22,0
Espesor de la envoltura	mm	4,0	4,0	4,0	4,0	4,0	4,0	4,0	4,0	4,0	4,0
Diámetro exterior	mm	92,3	95,3	98,9	105,4	106,1	108,9	110,6	119,7	122,7	126,2
Peso aprox. ² Al conductor Cu conductor	kg/km	9158 11685	9739 12899	10463 14445	11630 16670	11999 18269	12834 20934	13000 21800	14960 25074	16352 28899	33000 33000
Radio mínimo de la curvatura	cm	138	142	148	158	159	163	166	179	184	190
Esfuerzos adicionales de tracción Al conductor Cu conductor	kN	12,0 20,0	15,0 25,0	18,9 31,5	24,0 40,0	30,0 50,0	36,0 60,0	42,0 70,0	48,0 80,0	60,0 100,0	75,0 125,0
DC resistencia Cu conductor Al conductor	Ω/km	0,047 0,0778	0,0366 0,0605	0,028 0,464	0,0221 0,0367	0,0176 0,0291	0,0151 0,0247	0,0129 0,0212	0,0113 0,0186	0,009 0,0149	0,0072 0,0119
Inductancia ³	mH/km	0,254	0,236	0,219	0,203	0,18	0,167	0,155	0,152	0,139	0,126
Capacitad	μF/km	0,133	0,143	0,154	0,174	0,119	0,220	0,220	0,240	0,230	0,270
Intensidad max admissible en el suelo ⁴ Cu Al	A	638 519	711 585	785 657	868 731	938 803	986 858	1038 914	1072 948	1133 1018	1149 1068
Intensid. max admissible en el sue lo Cu Al	A	620 521	670 572	725 631	774 686	812 734	862 782	892 816	910 841	940 883	960 915
Intensidad max admissible en el aire⁵ Cu Al	A	800 641	908 734	1031 841	1160 955	1281 1071	1380 1174	1471 1260	1547 1339	1669 1464	1720 1550
Intensidad max admissible en el aire ⁶ Cu Al	A	796 658	884 743	977 836	1063 927	1136 1013	1232 1101	1297 1166	1327 1211	1393 1295	1481 1395

- 1 La sección de la pantalla se selecciona a partir de las condiciones de fluido de las corrientes de cortocircuito y puede ser aumentada.
- 2 El peso se da para los cables de marcas con la cubierta de polietileno y la sección principal de la pantalla.
- 3 El cálculo se realiza en caso de tender los cables en trifolio muy estrecho y con la conexión del escudo a tierra de dos lados.
- 4 Las corrientes están calculadas para la profundidad de tendido de 1.5 m de la resistencia térmica específica del suelo de 1.20 K-m/W y el coeficiente de carga Kc = 0.8.
- 5 Las corrientes están calculadas en caso de tendido en el aire y la posición en trifolio, la distancia hueca entre las fases del cable el diámetro, no hay influencia de la radiación solar, la conexión a tierra está realizada de dos lados.
- 6 Las corrientes están calculadas en caso de tendido en el aire y la posición en paralelo, la distancia hueca entre las fases del cable el diámetro, no hay influencia de la radiación solar, la conexión a tierra está realizada de dos lados.

Cables XLPE para la tensión de 110-220 kV

Capacidad de carga

La capacidad de carga de los cables de alta tensión se calcula para las siguientes condiciones.

Para el tendido en el suelo:		Para el tendido en el aire:						
factor de carga	0,8	factor de carga	1,0					
profundidad de tendido	1,5 m	temperatura del medio ambiente, t	t° 25°C					
resistencia térmica del suelo	1,2 K•m/W	temperatura del conductor, t°	90°C					
temperatura del medio ambiente, t°	15°C	conexión de la pantalla a tierra	enambos extremos					
temperatura del conductor, t°	90°C	•						

Durante el tendido en el suelo en trifolio los cables se colocan muy cercas. Durante el tendido de los cables en trifolio en el aire la distancia hueca recomendada entre los cables es de 25 cm. En caso de la posición de los cables con un conductor en paralelo la distancia hueca recomendada entre los ejes de los cables – el diámetro del cable.

Coeficientes de corrección para la profundidad de tendido

Profundidad de tendido, m	0,8	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4
Coeficiente de corrección	1,08	1,05	1,03	1,01	1,0	0,98	0,97	0,96	0,94

Cables XLPE para la tensión de 110-220 kV

Corrientes de cortocircuito

Para todos los tipos de cables y secciones la corriente de cortocircuito se calcula a partir de siguientes condiciones:

Temperatura en el conductor

antes del cortocircuito 90°C después del cortocircuito 250°C

Screen temperature

antes del cortocircuito 70°C después del cortocircuito 350°C

El cable XLPE con aislamiento de polietileno reticulado se puede someter a las sobrecargas con temperatura de más de 90°C. Entretanto, algunas sobrecargas de emergencia no van a influir de una manera significante sobre el plazo de servicio del cable.

Las corrientes admisibles de cortocircuito durante un segundo por el conductor y la pantalla no deben superar las que se muestran en las tablas.

Corriente admisible de cortocircuito durante un segundo por el conductor												
Sección del conductor, mm²	185	240	300	350	400	500	630	800	1000	1200	1600	2000
conductor de cobre	26,5	34,3	42,9	50,1	<i>57,</i> 2	71,5	90,1	114,4	14	172,8	230	288
conductor de aluminio	17 , 5	22,7	28,2	33,1	37,6	47	59,2	75,2	93, 1	114,3	152	190

Corriente admisible de cortocircuito durante un segundo por la pantalla												
Sección de la pantalla, mm²	33	I .	1					210		265		
Corriente de cortocircu. de 1 sec por la pantalla, KA	i I	10,15		i i	i I	I I		i I		53,8		

En caso de cortocircuito además de calentamiento también se debe tomar en consideración las fuerzas dinámicas que aparecen entre las fases del cable, los valores de las que pueden alcanzar grandes magnitudes. Se debe tomarlos en consideración durante selección del modo de fijación del cable.

Cables XLPE para la tensión de 110-220 kV

Condiciones de tendido y las pruebas después de tender los cables de la alta tensión

Durante el tendido de los cables con aislamiento de polietileno reticulado para la tensión de 110-220 kV el radio de la curvatura no debe ser menor que 20xD donde D – el diámetro exterior del cable. Después de tendido en el trayecto se permite la curvatura de los cables con el radio de 15xD a la condición de uso de un calibre especial (por ejemplo, en las cajas terminales y en otros casos).

Durante la tracción del cable por media o por el conductor los esfuerzos de tracción no deben superar los siguientes valores:

 $F = S \times 50 \text{ N/mm}^2 - \text{para el conductor de cobre,}$ $F = S \times 30 \text{ N/mm}^2 - \text{para el conductor de aluminio,}$ donde $S - \text{la sección del conductor en mm}^2$.

Durante el tendido de los cables la temperatura no debe ser inferior de -5°C. A la condición de calentamiento previo del cable se permite el tendido a la temperatura de:

-15°C – para los cables con cubierta de caucho plasticado de PVC y de La cubierta de una composición polimérica que no propaga fuego;

-20°C – para los cables con cubierta de polietileno.

Después de montar la línea de cable antes de su puesta en explotación cada su fase (el cable y los accesorios montados juntos) debe soportar durante una hora la prueba de la tensión elevada alterna con los siguientes valores: para los cables de 110 kV – la tensión de 128 kV, para los cables de 220 kV – la tensión de 180 kV, con la frecuencia dentro de los límites de 20 Hz a 300 Hz, mientras la forma de la onda debe ser sinusoidal. Por acuerdo entre el fabricante y el cliente en vez de la prueba con la tensión elevada alterna se permite la prueba con la tensión efectiva alterna nominal durante 24 horas sin carga: para los cables de 110 kV – la tensión de 64 kV, para los cables de 220 kV – la tensión de 127 kV.

La cubierta del cable debe estar probada por la tensión constante de 10 kV aplicada entre la pantalla metálica y la puesta a tierra durante 1 minuto.

Durante el tendido de los cables "Estralin HVC" se debe cumplir con los requisitos del "Manual de tendido de los cables de fuerza con aislamiento de polietileno reticulado para la tensión de 110-500 kV, No. "TD-16-01P".

Observaciones